Potência é todo número na forma an, com a ≠ 0.
a é a base, n é o expoente e an é a potência.
an = a x a x a x a x...a (n vezes)
Por convenção, admitiremos que todo número elevado a 0 é igual a 1, a0 = 1 e todo número elevado a 1 é igual a ele próprio, a1 = a.
Exemplos
21 = 2 540 = 1 44 = 256 53 = 125
Potência de base racional
Para resolver uma potência cuja base é um número fracionário, elevamos tanto o numerador quanto o denominador da fração ao expoente dado.
Exemplo
Potência de expoente negativo
A ideia de inverso é utilizada para solucionar potências de expoente negativo, transformamos numerador em denominador, e vice-versa, logo após, tornamos o expoente positivo.
Exemplos
Multiplicação de potências de mesma base
Resolvemos a multiplicação de potências de mesma base conservando uma das bases e adicionando os expoentes.
am . an = am + n
Exemplos
Divisão de potências de mesma base
Toda divisão de potências de mesma base, com esta diferente de zero, pode ser resolvida conservando uma das bases e subtraindo os expoentes.
am : an = am – n, com a ≠ 0.
Exemplos
Multiplicação de fatores elevados ao mesmo expoente
Para o produto de dois ou mais fatores elevados ao mesmo expoente, elevamos cada um dos fatores ao expoente dado na questão.
(a . b)n = an . bn
Exemplos
(5 . 6)4 → 54 . 64 (0,2 . 1,3)3 → (0,2)3 . (1,3)3
Divisão de expoente igual
Aqui segue-se o mesmo critério dado na propriedade anterior: eleva-se o dividendo e o divisor ao mesmo expoente.
(a : b)n = an : bn
Exemplos
(9 : 8)5 = 95 : 85 (2,3 : 0,1)2 = (2,3)2 : (0,1)2
Potência de potência
Quando elevamos uma determinada potência à outra potência, temos uma potência de potência. Para resolvê-la, podemos conservar a base e multiplicar os expoentes.
(am)n = am . n
Exemplos
(23)4 → 23 . 4 = 212 [(1/5)2]5 → (1/5)2 . 5 = (1/5)10
Potência de base 10
A potência de base 10 é utilizada para abreviar a escrita de números que contenham n fatores 10, facilitando assim sua representação.
Exemplos
105 = 100000 (5 zeros)
107 = 10000000 (7 zeros)
103 = 1000 (3 zeros)
Nesse tipo de potência, quanto o expoente for positivo, ele indica a quantidade de zeros que deverão ser acrescentados após o algarismo 1.
10-2 = 0,01 (2 casas decimais)
10-5 = 0,00001 (5 casas decimais)
Aqui, como o expoente é negativo, ele indica o número de casas decimais que deverão ser criadas a partir do zero e com final 1.
Considerações finais
É muito importante e necessário que se conheça sobre os vários tipos de conteúdos que nos ajudam a, cotidianamente, facilitar nossa vida social. Exemplo disso são as potências. Elas nos trazem conforto na hora de calcular, nos ajudam a compreender melhor as ideias de divisão e multiplicação, nos abrem as portas, através de suas propriedades, dos saberes algébricos generalizantes do conhecimento matemático e facilitadores da aplicabilidade dos estudos realizados.
Nenhum conhecimento é tão completo que encerre-se em si mesmo, nem tão pobre que deva ser descartado ao primeiro olhar. Todos os sabres deverão passar por sério processo de análise, processamento mental e arquivamento, pois, com certeza, eles serão utilizados posteriormente à medida que novos desafios forem surgindo em nossas jornadas naturais. Não tenhamos os estudos como fardos que somos obrigados a levar ao longo dos nossos dias, mas sim, como relíquias, que temos que guardar, apreciar e exibir como troféus conquistados nas maratonas do saber educacional.
“Uma boa educação é aquela que prepara cidadãos críticos e reflexivos sobre os males que assolam a sociedade na qual estão inseridos.”
Robison Sá.